Indice
8 relazioni: Frontiera (topologia), Funzione armonica, Funzione costante, Geodetica, Lemma di Hopf, Matematica, Spazio metrico completo, Varietà riemanniana.
Frontiera (topologia)
In topologia, la frontiera o contorno o bordo di un sottoinsieme S di uno spazio topologico X è la chiusura dell'insieme meno il suo interno.
Vedere Condizione della sfera interna e Frontiera (topologia)
Funzione armonica
In analisi matematica, una funzione armonica è una funzione differenziabile fino al secondo ordine f che soddisfa l'equazione di Laplace:. ossia l'insieme delle funzioni armoniche costituisce il nucleo dell'operatore di Laplace.
Vedere Condizione della sfera interna e Funzione armonica
Funzione costante
In matematica una funzione costante (a volte anche chiamata collasso) è una funzione i cui valori non variano, e rimangono quindi costanti al variare della variabile indipendente nel suo dominio.
Vedere Condizione della sfera interna e Funzione costante
Geodetica
In matematica, e più precisamente in geometria differenziale, una geodetica è la curva più breve che congiunge due punti di uno spazio. Lo spazio in questione può essere una superficie, una più generale varietà riemanniana, o un ancor più generale spazio metrico.
Vedere Condizione della sfera interna e Geodetica
Lemma di Hopf
In matematica, il lemma di Hopf o teorema di Hopf stabilisce che se una funzione definita in una regione dello spazio euclideo delimitata da una superficie sufficientemente liscia ha un massimo (o minimo) sul bordo della regione ed è armonica in tutti i punti interni, allora la derivata direzionale nella direzione normale uscente dal bordo è strettamente positiva (o negativa).
Vedere Condizione della sfera interna e Lemma di Hopf
Matematica
La matematica (dal greco: μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere") è la disciplina che studia le quantità, i numeri, lo spazio,.
Vedere Condizione della sfera interna e Matematica
Spazio metrico completo
In matematica, uno spazio metrico completo è uno spazio metrico in cui tutte le successioni di Cauchy sono convergenti ad un elemento dello spazio.
Vedere Condizione della sfera interna e Spazio metrico completo
Varietà riemanniana
In geometria differenziale, una varietà riemanniana è una varietà differenziabile su cui sono definite le nozioni di distanza, lunghezza, geodetica, area (o volume) e curvatura.
Vedere Condizione della sfera interna e Varietà riemanniana
Conosciuto come Proprietà della sfera interna.