Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
UscenteArrivo
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Equazione di d'Alembert

Indice Equazione di d'Alembert

*Equazione di Lagrange – anche nota come equazione di d'Alembert-Lagrange.

Indice

  1. 3 relazioni: Equazione delle onde, Equazione di Lagrange, Onda.

Equazione delle onde

In analisi matematica lequazione delle onde, conosciuta anche come equazione di d'Alembert, è un'equazione differenziale alle derivate parziali iperbolica di grande importanza in diversi campi della fisica, tra cui acustica, elettromagnetismo e fluidodinamica (varianti dell'equazione si trovano anche in meccanica quantistica e relatività generale), descrivendo solitamente la propagazione di un'onda, lineare e non dispersiva, nelle variabili spaziali e temporali, tra cui le onde sonore ed elettromagnetiche.

Vedere Equazione di d'Alembert e Equazione delle onde

Equazione di Lagrange

In matematica, l'equazione di Lagrange, anche nota come equazione di d'Alembert o equazione di d'Alembert-Lagrange, che prende il nome da Jean d'Alembert e Joseph Louis Lagrange, è un'equazione differenziale del primo ordine della forma: dove f e g sono funzioni reali derivabili note.

Vedere Equazione di d'Alembert e Equazione di Lagrange

Onda

Con onda, in fisica, si indica una perturbazione che nasce da una sorgente e si propaga nel tempo e nello spazio trasportando energia o quantità di moto, senza comportare un associato spostamento della materia.

Vedere Equazione di d'Alembert e Onda