Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Perpendicolarità e Prodotto vettoriale

Scorciatoie: Differenze, Analogie, Jaccard somiglianza Coefficiente, Riferimenti.

Differenza tra Perpendicolarità e Prodotto vettoriale

Perpendicolarità vs. Prodotto vettoriale

La perpendicolarità è un concetto geometrico che indica la presenza di un angolo retto tra due entità geometriche. Queste possono essere ad esempio due rette in un piano, oppure una retta ed un piano o due piani incidenti nello spazio. In matematica, in particolare nel calcolo vettoriale, il prodotto vettoriale è un'operazione binaria interna tra due vettori in uno spazio euclideo tridimensionale che restituisce un altro vettore che è normale al piano formato dai vettori di partenza.

Analogie tra Perpendicolarità e Prodotto vettoriale

Perpendicolarità e Prodotto vettoriale hanno 5 punti in comune (in Unionpedia): Angolo, Normale (superficie), Prodotto scalare, Sistema di riferimento cartesiano, Vettore (matematica).

Angolo

Un angolo (dal latino angulus, dal greco ἀγκύλος (ankýlos), derivazione dalla radice indoeuropea ank, piegare, curvare), in matematica, indica ciascuna delle due porzioni di piano comprese tra due semirette aventi la stessa origine.

Angolo e Perpendicolarità · Angolo e Prodotto vettoriale · Mostra di più »

Normale (superficie)

In matematica, una normale a una superficie piana è un vettore tridimensionale perpendicolare a quella superficie. Una normale ad una superficie non piana nel punto p su quella superficie è un vettore perpendicolare al piano tangente a quella superficie in p. La parola normale è adoperata anche come aggettivo e come nome con questo significato: una retta normale ad un piano, la componente normale di una forza, il vettore normale, ecc.

Normale (superficie) e Perpendicolarità · Normale (superficie) e Prodotto vettoriale · Mostra di più »

Prodotto scalare

In matematica, in particolare nel calcolo vettoriale, il prodotto scalare è un'operazione binaria che associa ad ogni coppia di vettori appartenenti ad uno spazio vettoriale definito sul campo reale un elemento del campo.

Perpendicolarità e Prodotto scalare · Prodotto scalare e Prodotto vettoriale · Mostra di più »

Sistema di riferimento cartesiano

Rappresentazione di alcuni punti nel piano cartesiano In matematica, un sistema di riferimento cartesiano è un sistema di riferimento formato da n rette ortogonali, intersecantisi tutte in un punto chiamato origine, su ciascuna delle quali si fissa un orientamento (sono quindi rette orientate) e per le quali si fissa anche un'unità di misura (cioè si fissa una metrica di solito euclidea) che consente di identificare qualsiasi punto dell'insieme mediante n numeri reali.

Perpendicolarità e Sistema di riferimento cartesiano · Prodotto vettoriale e Sistema di riferimento cartesiano · Mostra di più »

Vettore (matematica)

In matematica, un vettore è un elemento di uno spazio vettoriale. I vettori sono quindi elementi che possono essere sommati fra loro e moltiplicati per dei numeri, detti scalari.

Perpendicolarità e Vettore (matematica) · Prodotto vettoriale e Vettore (matematica) · Mostra di più »

La lista di cui sopra risponde alle seguenti domande

Confronto tra Perpendicolarità e Prodotto vettoriale

Perpendicolarità ha 22 relazioni, mentre Prodotto vettoriale ha 66. Come hanno in comune 5, l'indice di Jaccard è 5.68% = 5 / (22 + 66).

Riferimenti

Questo articolo mostra la relazione tra Perpendicolarità e Prodotto vettoriale. Per accedere a ogni articolo dal quale è stato estratto informazioni, visitare: