Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
UscenteArrivo
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Criterio di Sylvester

Indice Criterio di Sylvester

In algebra lineare, il criterio di Sylvester è un teorema che fornisce una condizione necessaria e sufficiente affinché una matrice simmetrica o un prodotto scalare siano definiti positivi.

Indice

  1. 4 relazioni: Algoritmo di Lagrange, Matrice definita positiva, Minore (algebra lineare), Segnatura (algebra lineare).

Algoritmo di Lagrange

In matematica, e più precisamente in algebra lineare, l'algoritmo di Lagrange è un algoritmo utile a trovare una base ortogonale in uno spazio vettoriale di dimensione finita munito di un prodotto scalare.

Vedere Criterio di Sylvester e Algoritmo di Lagrange

Matrice definita positiva

In matematica, e più precisamente in algebra lineare, una matrice definita positiva è una matrice quadrata A tale che, detto mathbf x^* il trasposto complesso coniugato di mathbf x, si verifica che la parte reale di mathbf x^* A mathbf x è positiva per ogni vettore complesso mathbf x ne mathbf 0.

Vedere Criterio di Sylvester e Matrice definita positiva

Minore (algebra lineare)

In matematica, in particolare in algebra lineare, un minore di una matrice A è il determinante di una matrice quadrata ottenibile da A eliminando alcune righe e/o colonne di A. I minori sono uno strumento utile per calcolare il rango di una matrice, e quindi per risolvere i sistemi lineari.

Vedere Criterio di Sylvester e Minore (algebra lineare)

Segnatura (algebra lineare)

In matematica, e più precisamente in algebra lineare, la segnatura è una terna di numeri che corrispondono al numero di autovalori di una matrice simmetrica (o di un prodotto scalare associato).

Vedere Criterio di Sylvester e Segnatura (algebra lineare)

Conosciuto come Criterio di Jacobi, Criterio di Jacobi-Sylverster, Criterio di Sylverster.