Indice
4 relazioni: Equazione delle onde, Funzione speciale, Funzioni di Mathieu, Lista di funzioni.
Equazione delle onde
In analisi matematica lequazione delle onde, conosciuta anche come equazione di d'Alembert, è un'equazione differenziale alle derivate parziali iperbolica di grande importanza in diversi campi della fisica, tra cui acustica, elettromagnetismo e fluidodinamica (varianti dell'equazione si trovano anche in meccanica quantistica e relatività generale), descrivendo solitamente la propagazione di un'onda, lineare e non dispersiva, nelle variabili spaziali e temporali, tra cui le onde sonore ed elettromagnetiche.
Vedere EqWorld e Equazione delle onde
Funzione speciale
In matematica sono chiamate funzioni speciali delle specifiche funzioni di variabili reali o complesse a valori reali o complessi che hanno proprietà che le rendono utili in diverse applicazioni e che rendono opportuno il loro studio sistematico, soprattutto per quanto riguarda le loro applicazioni computazionali e le loro connessioni con altre funzioni, equazioni differenziali e di altri generi e altre strutture non necessariamente continue.
Vedere EqWorld e Funzione speciale
Funzioni di Mathieu
In matematica, le funzioni di Mathieu sono funzioni speciali definite come soluzioni dell'equazione di Mathieu, un'equazione differenziale ordinaria del secondo ordine, un caso particolare dell'equazione di Hill.
Vedere EqWorld e Funzioni di Mathieu
Lista di funzioni
In matematica, parecchie funzioni sono abbastanza importanti, in termini di applicazioni e di collegamenti con altre entità matematiche, da meritare un proprio nome ed un proprio simbolo.
Vedere EqWorld e Lista di funzioni