Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
UscenteArrivo
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Taglio (topologia)

Indice Taglio (topologia)

Nella branca della geometria dedicata alla topologia, è operazione comune tagliare e incollare alcuni spazi topologici per crearne di nuovi.

Indice

  1. 8 relazioni: Chirurgia di Dehn, Congettura di geometrizzazione di Thurston, Corpo con manici, Decomposizione JSJ, Somma connessa, Teorema dell'intorno tubolare, Varietà con bordo, 3-varietà irriducibile.

Chirurgia di Dehn

In matematica, e più precisamente nella topologia della dimensione bassa, la chirurgia di Dehn è un'operazione che permette la trasformazione di una 3-varietà in un'altra 3-varietà.

Vedere Taglio (topologia) e Chirurgia di Dehn

Congettura di geometrizzazione di Thurston

La congettura di geometrizzazione di Thurston è una congettura matematica formulata intorno al 1982 dal matematico statunitense William Thurston.

Vedere Taglio (topologia) e Congettura di geometrizzazione di Thurston

Corpo con manici

sconnessa. In geometria, un corpo con manici è uno spazio topologico ottenuto agganciando alcuni "manici" alla palla tridimensionale. Si tratta di un oggetto usato in topologia della dimensione bassa, specialmente nello studio delle 3-varietà.

Vedere Taglio (topologia) e Corpo con manici

Decomposizione JSJ

In geometria la decomposizione JSJ è un teorema riguardante le 3-varietà. Il nome è legato alle iniziali dei tre matematici che formularono il teorema alla fine degli anni settanta, e cioè William Jaco, Peter Shalen e Klaus Johannson.

Vedere Taglio (topologia) e Decomposizione JSJ

Somma connessa

La somma connessa è un'operazione eseguita in matematica, e più precisamente in geometria, per creare una nuova varietà a partire da due varietà date.

Vedere Taglio (topologia) e Somma connessa

Teorema dell'intorno tubolare

In geometria, il teorema dell'intorno tubolare è un importante strumento della topologia differenziale, utile in presenza di una varietà differenziabile contenuta in un'altra varietà di dimensione più grande.

Vedere Taglio (topologia) e Teorema dell'intorno tubolare

Varietà con bordo

In geometria, una varietà con bordo è uno spazio n-dimensionale localmente simile allo spazio euclideo, e avente un "bordo". Un esempio è un cerchio nel piano, poiché ha dimensione 2 e il suo bordo è una circonferenza.

Vedere Taglio (topologia) e Varietà con bordo

3-varietà irriducibile

In geometria, e più precisamente nella topologia della dimensione bassa, una 3-varietà irriducibile è una 3-varietà in cui ogni sfera borda una palla.

Vedere Taglio (topologia) e 3-varietà irriducibile

Conosciuto come Incollamento.