Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
UscenteArrivo
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Geometria integrale

Indice Geometria integrale

In matematica, la geometria integrale è la teoria delle misure che sono invarianti rispetto al gruppo delle simmetrie dallo spazio considerato in sé stesso (il gruppo delle isometrie invarianti rispetto all'operazione di composizione di funzioni) definite su sottovarietà dello spazio come ad esempio curve, piani o geodetiche.

Indice

  1. 10 relazioni: Composizione di funzioni, Geodetica, Gruppo (matematica), Isometria, Matematica, Misura (matematica), Simmetria (matematica), Trasformata di Radon, Trasformata integrale, Varietà differenziabile.

Composizione di funzioni

In matematica, la composizione di funzioni è l'applicazione di una funzione al risultato di un'altra funzione. Più precisamente, una funzione f tra due insiemi X e Y associa ogni elemento di X a uno di Y: in presenza di un'altra funzione g che associa ogni elemento di Y a un elemento di un altro insieme Z, si definisce la composizione di f e g come la funzione che associa ogni elemento di X a uno di Z usando prima f e poi g.

Vedere Geometria integrale e Composizione di funzioni

Geodetica

In matematica, e più precisamente in geometria differenziale, una geodetica è la curva più breve che congiunge due punti di uno spazio. Lo spazio in questione può essere una superficie, una più generale varietà riemanniana, o un ancor più generale spazio metrico.

Vedere Geometria integrale e Geodetica

Gruppo (matematica)

In matematica un gruppo è una struttura algebrica formata dall'abbinamento di un insieme non vuoto con un'operazione binaria interna (come ad esempio la addizione o la moltiplicazione), che soddisfa gli assiomi di associatività, di esistenza dell'elemento neutro e di esistenza dell'inverso di ogni elemento.

Vedere Geometria integrale e Gruppo (matematica)

Isometria

In matematica, una isometria (dal greco ἴσος, isos, che significa uguale) è una nozione che generalizza quella di movimento rigido di un oggetto o di una figura geometrica.

Vedere Geometria integrale e Isometria

Matematica

La matematica (dal greco: μάθημα (máthema), traducibile con i termini "scienza", "conoscenza" o "apprendimento"; μαθηματικός (mathematikós) significa "incline ad apprendere") è la disciplina che studia le quantità, i numeri, lo spazio,.

Vedere Geometria integrale e Matematica

Misura (matematica)

In analisi matematica, una misura, talvolta detta misura positiva, è una funzione che assegna un numero reale a taluni sottoinsiemi di un dato insieme per rendere quantitativa la nozione della loro estensione.

Vedere Geometria integrale e Misura (matematica)

Simmetria (matematica)

In matematica, una simmetria è un'operazione che muove o trasforma un oggetto lasciandone inalterato l'aspetto. L'oggetto può essere, ad esempio, una figura geometrica o un'equazione.

Vedere Geometria integrale e Simmetria (matematica)

Trasformata di Radon

In matematica, la trasformata di Radon è la trasformata integrale che porta una funzione f definita sul piano a una funzione Rf definita sullo spazio (bidimensionale) delle rette del piano, il cui valore su una particolare retta è uguale all'integrale della funzione su quella retta.

Vedere Geometria integrale e Trasformata di Radon

Trasformata integrale

In matematica una trasformata integrale è un'applicazione, generalmente lineare, di uno spazio di funzioni su un altro spazio di funzioni realizzata attraverso un integrale, utilizzata per ridurre equazioni differenziali lineari a equazioni algebriche e per l'analisi dei segnali.

Vedere Geometria integrale e Trasformata integrale

Varietà differenziabile

In matematica, e in particolare in geometria differenziale, la nozione di varietà differenziabile è una generalizzazione del concetto di curva e di superficie differenziabile in dimensione arbitraria.

Vedere Geometria integrale e Varietà differenziabile