Stiamo lavorando per ripristinare l'app di Unionpedia nel Google Play Store
UscenteArrivo
🌟Abbiamo semplificato il nostro design per una migliore navigazione!
Instagram Facebook X LinkedIn

Parola (teoria dei gruppi)

Indice Parola (teoria dei gruppi)

Nella teoria dei gruppi, una parola è qualsiasi prodotto scritto di elementi di un gruppo e dei loro inversi. Ad esempio, se x, y e z sono elementi di un gruppo G, allora xy, z−1 xzz e y−1 zxx−1 yz−1 sono parole nell'insieme.

Indice

  1. 16 relazioni: Classe di coniugio, Elemento neutro, Espressione matematica, Forma canonica, Gruppo (matematica), Gruppo ciclico, Gruppo di Klein, Gruppo diedrale, Gruppo libero, Inclusione (matematica), Potenza (matematica), Presentazione di un gruppo, Prodotto diretto, Se e solo se, Sottogruppo, Teoria dei gruppi.

Classe di coniugio

In matematica e specialmente in teoria dei gruppi, gli elementi di un gruppo possono essere divisi in classi di coniugio; gli elementi di una stessa classe di coniugio condividono molte proprietà, e il loro studio nel caso di gruppi non abeliani può essere di aiuto per la comprensione della loro struttura.

Vedere Parola (teoria dei gruppi) e Classe di coniugio

Elemento neutro

In matematica, e in particolare algebra astratta, lelemento neutro è un elemento di un loop o di un monoide (e quindi anche di un gruppo o sue sovrastrutture come anelli e via via più specifiche) che "non modifica nulla" se posto sia a sinistra che a destra in un'operazione.

Vedere Parola (teoria dei gruppi) e Elemento neutro

Espressione matematica

Un'espressione matematica è un insieme di numeri legati da segni di operazioni matematiche, detti operatori matematici.

Vedere Parola (teoria dei gruppi) e Espressione matematica

Forma canonica

In matematica la forma canonica di un oggetto è una maniera uniforme utilizzata per descriverlo in modo unico,.

Vedere Parola (teoria dei gruppi) e Forma canonica

Gruppo (matematica)

In matematica un gruppo è una struttura algebrica formata dall'abbinamento di un insieme non vuoto con un'operazione binaria interna (come ad esempio la addizione o la moltiplicazione), che soddisfa gli assiomi di associatività, di esistenza dell'elemento neutro e di esistenza dell'inverso di ogni elemento.

Vedere Parola (teoria dei gruppi) e Gruppo (matematica)

Gruppo ciclico

In matematica, più precisamente nella teoria dei gruppi, un gruppo ciclico è un gruppo che può essere generato da un unico elemento. Un tale gruppo è isomorfo al gruppo mathbb/nmathbb delle classi di resto modulo n, oppure al gruppo mathbb dei numeri interi.

Vedere Parola (teoria dei gruppi) e Gruppo ciclico

Gruppo di Klein

In matematica, il gruppo di Klein (o anche 4-gruppo di Klein, 4-gruppo, gruppo quadrinomio, Vierergruppe o gruppo trirettangolo, spesso indicato dalla lettera V (cfr. il ted. "Vier", quattro) è il gruppo Z2 × Z2, prodotto diretto di due copie del gruppo ciclico di ordine 2 (o ogni variante isomorfo).

Vedere Parola (teoria dei gruppi) e Gruppo di Klein

Gruppo diedrale

In matematica, il gruppo diedrale di ordine 2n è il gruppo formato dalle isometrie del piano che lasciano immutati i poligoni regolari a n lati.

Vedere Parola (teoria dei gruppi) e Gruppo diedrale

Gruppo libero

Grafo di Cayley del gruppo libero su due generatori, ''a'' e ''b''. In teoria dei gruppi, un gruppo G si dice libero se esiste un sottoinsieme S di G tale che è possibile scrivere ogni elemento di G con una parola ridotta non banale, ossia come applicazione ripetuta dell'operazione binaria associata a G a un numero finito di elementi di S e dei loro inversi in modo univoco (tralasciando le variazioni banali come st−1.

Vedere Parola (teoria dei gruppi) e Gruppo libero

Inclusione (matematica)

In matematica, e in particolare in teoria degli insiemi, l'inclusione, indicata con subseteq, è una relazione binaria tra insiemi definita nel seguente modo: "l'insieme B è contenuto o incluso nell'insieme A se, per ogni elemento x, se x appartiene a B allora x appartiene ad A".

Vedere Parola (teoria dei gruppi) e Inclusione (matematica)

Potenza (matematica)

In matematica, la potenza è un'operazione che associa a una coppia di numeri a e n, detti rispettivamente base ed esponente, il numero dato dal prodotto di n fattori uguali ad a: in questo contesto a può essere un numero intero, razionale o reale mentre n è un numero intero positivo.

Vedere Parola (teoria dei gruppi) e Potenza (matematica)

Presentazione di un gruppo

In matematica, e in particolare in algebra astratta, una presentazione di un gruppo è una particolare definizione ottenuta mediante l'elenco dei generatori del gruppo, ovvero degli elementi il cui prodotto combinato dà origine a tutti gli elementi del gruppo, e delle relazioni tra i vari elementi.

Vedere Parola (teoria dei gruppi) e Presentazione di un gruppo

Prodotto diretto

In algebra, il prodotto diretto esterno di due gruppi è un altro gruppo, costruito prendendo il prodotto cartesiano di questi e definendo l'operazione termine a termine.

Vedere Parola (teoria dei gruppi) e Prodotto diretto

Se e solo se

In matematica, filosofia, logica e nei campi tecnici che ne dipendono, si usa spesso l'espressione se e solo se, o l'abbreviazione sse, per esprimere l'equivalenza logica di due enunciati, esplicitando che i due enunciati hanno lo stesso valore di verità: se è vero il secondo allora è vero anche il primo, e viceversa.

Vedere Parola (teoria dei gruppi) e Se e solo se

Sottogruppo

Un sottoinsieme H di un gruppo G è un sottogruppo se è un gruppo con l'operazione definita in G. Ogni gruppo G contiene almeno due sottogruppi: il gruppo G stesso, ed il sottogruppo banale formato unicamente dall'elemento neutro di G (naturalmente questi coincidono se G ha un solo elemento).

Vedere Parola (teoria dei gruppi) e Sottogruppo

Teoria dei gruppi

La teoria dei gruppi è la branca della matematica che si occupa dello studio dei gruppi. In astratto e in breve un gruppo è una struttura algebrica caratterizzata da un'operazione binaria associativa, dotata di elemento neutro e per la quale ogni elemento della struttura possiede elemento inverso; un semplice esempio di gruppo è dato dall'insieme dei numeri interi, con l'operazione dell'addizione.

Vedere Parola (teoria dei gruppi) e Teoria dei gruppi